Calculus Calculator, AI, Calculus Formula Derivatives and Integrals

[Area Iklan Google AdSense - Top Post]

Calculus calculator derivatives and integrals

Helooo Engpocket friends, if you are an engineer, you must know that nothing stays static. Temperatures fluctuate, changing speeds, or structures vibrate. How to understand these changes? We can use calculus! Whether to analyzed cooling rate of an HVAC system or the stress on a pipe.

To help you calculate calculus faster, this calculus calculator helps you compute the rate of change (Derivative) and the accumulation of quantities (Integral).

Function Visualizer


Derivative & Integral Evaluator


Use standard math notation like: x^2, sin(x), or 2*x

Results:
f(x) = …
Derivative (Slope) ≈ …
Area (Integral from 0 to x) ≈ …
[Iklan Tengah Artikel - Disisipkan Otomatis]

Calculus formulas

𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞Formula: ddx(xn)=nxn1Example: ddx(x3)=3x2𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥Formula: xndx=xn+1n+1+CExample: x2dx=x33+C𝐏𝐫𝐨𝐝𝐮𝐜𝐭 𝐑𝐮𝐥𝐞Formula: (uv)=uv+uvUsed when multiplying two functions.𝐐𝐮𝐨𝐭𝐢𝐞𝐧𝐭 𝐑𝐮𝐥𝐞Formula: (uv)=uvuvv2\begin{array}{l} \textbf{Derivative} \\ \text{Formula: } \frac{d}{dx}(x^n) = nx^{n-1} \\[10pt] \text{Example: } \frac{d}{dx}(x^3) = 3x^2 \\[25pt] \textbf{Integral} \\ \text{Formula: } \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \\[10pt] \text{Example: } \int x^2 \, dx = \frac{x^3}{3} + C \\[25pt] \textbf{Product Rule} \\ \text{Formula: } (uv)' = u'v + uv' \\[10pt] \text{Used when multiplying two functions.} \\[25pt] \textbf{Quotient Rule} \\ \text{Formula: } \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \end{array}

What is calculus?

Calculus is math study of continuous change. It is divided into two types:

  1. Differential calculus (Derivatives): Measures how instantly something changes, for example how fast a car is moving at a specific second.
  2. Integral Calculus (Integrals): Measures accumulation, for example the total distance walked or how much a volume of a water tank.

As engineers, we also use calculus to calculate something like:
A. Calculating the rate of heat loss through a wall over time (Derivative) to choose an Aircon capacity.
B. Determining the bending moment of a beam (Integral of the shear force).
C. Calculating voltage across a capacitor based on the current flow (Integral).

Example case of calculus

This is the example of manual calculus calculating. You can also try the calculus calculator to make sure that both methods were right and the calculus calculator was accurate.

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏: 𝐅𝐢𝐧𝐝𝐢𝐧𝐠 𝐕𝐞𝐥𝐨𝐜𝐢𝐭𝐲 (𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞)Position function: s(t)=t2+4tFind velocity v(t) at t=3.Step 1 (Derive): v(t)=s(t)=2t+4Step 2 (Substitute): v(3)=2(3)+4Result: 10 m/s𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟐: 𝐀𝐫𝐞𝐚 𝐔𝐧𝐝𝐞𝐫 𝐂𝐮𝐫𝐯𝐞 (𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐞 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥)Function: f(x)=2xCalculate area from x=0 to x=4.Step 1 (Integrate): 2xdx=x2Step 2 (Evaluate): [42][02]Result: 16 square units\begin{array}{l} \textbf{Example 1: Finding Velocity (Derivative)} \\ \text{Position function: } s(t) = t^2 + 4t \\ \text{Find velocity } v(t) \text{ at } t = 3. \\[10pt] \text{Step 1 (Derive): } v(t) = s'(t) = 2t + 4 \\[10pt] \text{Step 2 (Substitute): } v(3) = 2(3) + 4 \\[10pt] \text{Result: } 10 \text{ m/s} \\[30pt] \textbf{Example 2: Area Under Curve (Definite Integral)} \\ \text{Function: } f(x) = 2x \\ \text{Calculate area from } x=0 \text{ to } x=4. \\[10pt] \text{Step 1 (Integrate): } \int 2x \, dx = x^2 \\[10pt] \text{Step 2 (Evaluate): } [4^2] - [0^2] \\[10pt] \text{Result: } 16 \text{ square units} \end{array}

This is the end of our calculus calculator post. To use our algebra calculator and find about algebra information deeper, you can visit this link.

calculus calculator
[Iklan Bawah Artikel - Penutup]

Leave a Comment